392 research outputs found

    Numerical Investigation of the Adsorption Process of Zeolite/Water in a Thermochemical Reactor for Seasonal Heat Storage

    Get PDF
    Zeolite 13X molecular sieve with high sorption capacity and significant sorption rate has been considered a promising candidate for seasonal heat storage. In this study, a code is developed to simulate the adsorption process between zeolite and water in all ranges of partial pressures, temperatures, and sorbate loadings. The results from the proposed code were compared with experiments and good agreement was observed. After validation, the developed model was used to study the effective parameters involved in the adsorption process of binder-free Zeolite 13X. A parametric study considering various temperatures and water content in the inflow air was conducted and the influence of different factors on the outlet temperature and adsorption enthalpy has been studied. This parametric study gives a good insight into the measures which can be taken for achieving the desired released energy or having the outlet temperature in the preferred range. The simulations have been conducted in a variety of temperature ranges provided during the desorption process, the humidity amount, and the mass flow rate of the incoming air. The relative influence of each parameter in the specified ranges is presented. The results have demonstrated the direct relationship of the partial pressure of water vapor and the desorption temperature with the adsorbed water amount and adsorption enthalpy while changing the mass flow rate mostly influences the discharging time

    Multi-Objective Techno-Economic Optimization of Design Parameters for Residential Buildings in Different Climate Zones

    Get PDF
    The comprehensive approach for a building envelope design involves building performance simulations, which are time-consuming and require knowledge of complicated processes. In addition, climate variation makes the selection of these parameters more complex. The paper aims to establish guidelines for determining a single-family household’s unique optimal passive design in various climate zones worldwide. For this purpose, a bi-objective optimization is performed for twenty-four locations in twenty climates by coupling TRNSYS and a non-dominated sorting genetic algorithm (NSGA-III) using the Python program. The optimization process generates Pareto fronts of thermal load and investment cost to identify the optimum design options for the insulation level of the envelope, window aperture for passive cooling, window-to-wall ratio (WWR), shading fraction, radiation-based shading control, and building orientation. The goal is to find a feasible trade off between thermal energy demand and the cost of thermal insulation. This is achieved using multi-criteria decision making (MCDM) through criteria importance using intercriteria correlation (CRITIC) and the technique for order preference by similarity to ideal solution (TOPSIS). The results demonstrate that an optimal envelope design remarkably improves the thermal load compared to the base case of previous envelope design practices. However, the weather conditions strongly influence the design parameters. The research findings set a benchmark for energy-efficient household envelopes in the investigated climates. The optimal solution sets also provide a criterion for selecting the ranges of envelope design parameters according to the space heating and cooling demands of the climate zone

    Optimized Design of Thermoelectric Energy Harvesting Systems for Waste Heat Recovery from Exhaust Pipes

    Get PDF
    With the increasing interest in energy efficiency and resource protection, waste heat recovery processes have gained importance. Thereby, one possibility is the conversion of the heat energy into electrical energy by thermoelectric generators. Here, a thermoelectric energy harvesting system is developed to convert the waste heat from exhaust pipes, which are very often used to transport the heat, e.g., in automobiles, in industrial facilities or in heating systems. That is why a mockup of a heating is built-up, and the developed energy harvesting system is attached. To build-up this system, a model-based development process is used. The setup of the developed energy harvesting system is very flexible to test different variants and an optimized system can be found in order to increase the energy yield for concrete application examples. A corresponding simulation model is also presented, based on previously developed libraries in Modelica®/Dymola®. In the end, it can be shown—with measurement and simulation results—that a thermoelectric energy harvesting system on the exhaust pipe of a heating system delivers extra energy and thus delivers a contribution for a more efficient usage of the inserted primary energy carrier

    Modeling and Optimizing Energy Supply and Demand in Home Area Power Network (HAPN)

    Get PDF
    Internet of energy based smart power grids demonstrate high in-feed from renewable energy resources (RESs) and lofty out-feed to energy consumers. Uncertainties evolved by incorporating RESs and time-varying energy consumption present immense challenges to the optimal control of smart power networks. To deal with these challenges, it is important to make the system deterministic by making time-ahead prediction and scheduling of power supply and demand. The present work confers a model of a co-scheduling framework, organizing cost-efficient activation of energy supply entities (ESEs) and load demands in a home area power network (HAPN). It integrates roof-top photovoltaic (PV) panels, diesel energy generator (DE), energy storage devices (ESDs), and smart load demands (SLDs) along with grid-supplied power. The scheduling model is based on mixed-integer linear programming (MILP) framework, incorporates a “min-max” optimization algorithm that reduces the daily energy bills, maintains high comfort level for the energy consumers, and increases the self-sufficiency of the home. The proposed strategy exploits the flexibility in dynamic energy price signals and SLDs of various classes, providing day-ahead cost-optimal scheduling decisions for incorporated energy entities. A linearized component-based model is developed, considering inefficiencies, taking various power phase modes of the SLDs along with the cost of operation, maintenance, and degradation of the equipment. A case study based on numerical analysis determines the particular features of the proposed HAPN model. Simulation results demonstrate the real prospect of our implemented strategy, utilizing a cost-effective optimal blend of distinct energy entities in a smart home

    Introducing Explicit Causality in Object-oriented Hybrid System Modeling

    Get PDF
    International audienceAlong with the rapid development of embedded devices and network technology, the area of CyberPhysical Systems (CPS), has arisen. In terms of modeling and simulation, CPS—like many technical systems—have ahybrid nature, i.e., discrete-event behavior and continuous-time dynamics have to be integrated with each other.Basically, this integration is supported by modern object-oriented modeling paradigms such as Modelica®. Theequation-based concept resolves the causality between interconnected components, which qualifies this modelingscheme for complex multi-domain systems. However, in hybrid systems, explicit causality is required to correctlymanage iterative events. This paper highlights these issues, including algorithmic loops and instantaneous multipleupdates, which essentially arise from incompatibilities between the object-oriented concept and specific discrete-eventphenomena. We discuss several possible solutions and introduce the concept of re-allocating the objects’ behavioralintelligence

    Modeling and Simulation of a Wastewater Pumping Plant.

    Get PDF
    Modeling wastewater pumping plants is rarely addressed in the literature. Standard component models as found in fluid simulation tool libraries are too complex, due to their projected generality, to be used for these applications. Lack of models results in a burden on engineers who have to test their control scenarios on real implemented systems. This may lead to unexpected delays and painful costs. In this work, easily manageable component-oriented models are derived and applied to the modeling and simulation of a real wastewater pumping system. The model derived in this paper is implemented in Modelica, and it helps better understanding the system dynamics. Thereby, a tool is provided for evaluating the performance of possible control schemes

    Electric Vehicle Battery Storage Concentric Intelligent Home Energy Management System Using Real Life Data Sets

    Get PDF
    To meet the world’s growing energy needs, photovoltaic (PV) and electric vehicle (EV) systems are gaining popularity. However, intermittent PV power supply, changing consumer load needs, and EV storage limits exacerbate network instability. A model predictive intelligent energy management system (MP-iEMS) integrated home area power network (HAPN) is being proposed to solve these challenges. It includes forecasts of PV generation and consumers’ load demand for various seasons of the year, as well as the constraints on EV storage and utility grid capacity. This paper presents a multi-timescale, cost-effective scheduling and control strategy of energy distribution in a HAPN. The scheduling stage of the MP-iEMS applies a receding horizon rule-based mixed integer expert system.To show the precise MP-iEMS capabilities, the suggested technique employs a case study of real-life annual data sets of home energy needs, EV driving patterns, and EV battery (dis)charging patterns. Annual comparison of unique assessment indices (i.e., penetration levels and utilization factors) of various energy sources is illustrated in the results. The MP-iEMS ensures users’ comfort and low energy costs (i.e., relative 13% cost reduction). However, a battery life-cycle degradation model calculates an annual decline in the storage capacity loss of up to 0.013%

    A framework for modeling and control of wastewater pumping stations

    Get PDF
    In waste water pumping stations, centrifugal pumps driven by induction motors are used to transport the effluent collected from residential and commercial buildings to the treatment plants. Due to the varying nature of collected effluent rate, means of pump flow control should be applied. Recently, there is an engineering debate on either recommending frequency converters control or on-and-off control using soft starter technology. While there are obvious reward and cost of utilizing either approach, the lack of a simulation model makes the selection decision a matter of poor agreement. This is likely to happen in developing areas where abnormal running conditions such as power failure, excess flows, and lack of spare parts are frequently encountered. In this paper, a method for modeling wastewater pumping stations using the component oriented modeling language Modelica is presented. The model provides a valuable simulation tool to validate and judge on the different control schemes of these stations. This approach is applied successfully on a real pumping station located at the northern part of Gaza. The derived model facilitates tuning the control parameters and allows better understanding of the system dynamics

    Full length interleukin 33 aggravates radiation-induced skin reaction

    Get PDF
    The interleukin (IL)-1 family member IL-33 has been described as intracellular alarmin with broad roles in wound healing, skin inflammation but also autoimmunity. Its dichotomy between full length (fl) IL-33 and the mature (m) form of IL-33 and its release by necrosis is still not fully understood. Here, we compare functional consequences of both forms in the skin in vivo, and therefore generated two lines of transgenic mice which selectively overexpress mmIL-33 and flmIL-33 in basal keratinocytes. Transgene mRNA was expressed at high level in skin of both lines but not in organs due to the specific K14 promoter. We could demonstrate that transgenic overexpression of mmIL-33 in murine keratinocytes leads to a spontaneous skin inflammation as opposed to flmIL-33. K14-mmIL-33 mice synthesize and secrete high amounts of mmIL-33 along with massive cutaneous manifestations, like increased epidermis and dermis thickness, infiltration of mast cells in the epidermis and dermis layers and marked hyperkeratosis. Using skin inflammation models such as IL-23 administration, imiquimod treatment, or mechanical irritation did not lead to exacerbated inflammation in the K14-flmIL-33 strain. As radiation induces a strong dermatitis due to apoptosis and necrosis, we determined the effect of fractionated radiation (12 Gy, 4 times). In comparison to wild-type mice, an increase in ear thickness in flmIL-33 transgenic mice was observed 25 days after irradiation. Macroscopic examination showed more severe skin symptoms in irradiated ears compared to controls. In summary, secreted mmIL-33 itself has a potent capacity in skin inflammation whereas fl IL-33 is limited due to its intracellular retention. During tissue damage, fl IL-33 exacerbated radiation-induced skin reaction
    • …
    corecore